Quasi-periodic time series
研究问题描述
准周期时间序列的异常检测问题
该问题可以拆解为两部分:准周期时间序列建模、异常检测。本调研主要针对准周期时间序列建模进行调研
数学描述
给定一个准周期时间序列的一组周期样本${\bf{x}}_1, …, {\bf{x}}_N$,其中${\bf{x}}_i$为一个周期内的时间序列片段,如何对$\bf{x}_i$进行建模,
即如何从${\bf{x}}_i$中提取出表征向量${\bf{v}}_i$用于后续的任务(如:异常检测、分类、预测,等)
领域现状
- 基于手工设计的特征的
这类方法依赖手工设定的特征,提取时间序列的统计特征与形状特征。这类方法往往仅能用于特定种类的数据,如ECG数据,而缺乏可拓展性。具体包括:
- 基于统计特征的
[1] 设计了7种统计特征用于描述时间序列
[2] 对ECG数据进行Recurrence Quantification Analysis,以提取出15种特征用于后续的任务
- 无需手工设计特征的
此类方法无需手工设计特征提取方法,而是自适应的从原始时间序列中学习时间序列的动态。
- 基于频率域特征的:
[3]: 将ECG数据进行小波变换(DWT)后,联合使用三种降维方法(LDA,ICA,PCA)对DWT结果进行降维,最后送入SVM或PNN(probabilistic neural network)进行判别
- 基于形态学特征的:
[6]: 使用Triadic Motif Field Images描述准周期序列中所包含的motifs,然后借助VGG-16作为特征提取器对TMF images进行特征提取以支持异常检测。
- 基于深度学习的:
[8]: 提出一种Hybrid Attentional LSTM-CNN Model,它结合了LSTM与CNN,分别用于提取准周期时间序列中的趋势变化与局部特征变化。
代表性论文10篇
- 基于手工设计的特征
[1] Ma, J., Sun, L., Wang, H., Zhang, Y., & Aickelin, U. (2016). Supervised anomaly detection in uncertain pseudoperiodic data streams. ACM Transactions on Internet Technology (TOIT), 16(1), 1-20.
[2] Desai, U., Martis, R. J., Acharya, U. R., Nayak, C. G., Seshikala, G., & SHETTY K, R. A. N. J. A. N. (2016). Diagnosis of multiclass tachycardia beats using recurrence quantification analysis and ensemble classifiers. Journal of Mechanics in Medicine and Biology, 16(01), 1640005.
- 无需手工设计特征的
[3] Martis, R. J., Acharya, U. R., & Min, L. C. (2013). ECG beat classification using PCA, LDA, ICA and discrete wavelet transform. Biomedical Signal Processing and Control, 8(5), 437-448.
4 Erkuş, E. C., & Purutçuoğlu, V. (2020). Outlier detection and quasi-periodicity optimization algorithm: Frequency domain based outlier detection (FOD). European Journal of Operational Research.
5 Iskhakova, A. O., Alekhin, M. D., & Bogomolov, A. V. (2020). Time-frequency transforms in analysis of non-stationary quasi-periodic biomedical signal patterns for acoustic anomaly detection. Информационно-управляющие системы, (1), 15-23.
[6] Zhang, Y., & Chen, X. (2020). Anomaly Detection in Time Series with Triadic Motif Fields and Application in Atrial Fibrillation ECG Classification. arXiv preprint arXiv:2012.04936.
7 Ngo, D., & Veeravalli, B. (2015, November). Design of a real-time morphology-based anomaly detection method from ECG streams. In 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 829-836). IEEE.
[8] Liu, F., Zhou, X., Cao, J., Wang, Z., Wang, T., Wang, H., & Zhang, Y. (2020). Anomaly Detection in Quasi-Periodic Time Series based on Automatic Data Segmentation and Attentional LSTM-CNN. IEEE Transactions on Knowledge and Data Engineering.
9 Thill, M., Däubener, S., Konen, W., & Bäck, T. (2019). Anomaly Detection in Electrocardiogram Readings with Stacked LSTM Networks. In ITAT (pp. 17-25).
10 Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., & Shroff, G. (2016). LSTM-based encoder-decoder for multi-sensor anomaly detection. arXiv preprint arXiv:1607.00148.
11 Dissanayake, T., Fernando, T., Denman, S., Sridharan, S., Ghaemmaghami, H., & Fookes, C. (2020). A robust interpretable deep learning classifier for heart anomaly detection without segmentation. IEEE Journal of Biomedical and Health Informatics.
经典论文or强相关论文
[8] Liu, F., Zhou, X., Cao, J., Wang, Z., Wang, T., Wang, H., & Zhang, Y. (2020). Anomaly Detection in Quasi-Periodic Time Series based on Automatic Data Segmentation and Attentional LSTM-CNN. IEEE Transactions on Knowledge and Data Engineering.
9 Thill, M., Däubener, S., Konen, W., & Bäck, T. (2019). Anomaly Detection in Electrocardiogram Readings with Stacked LSTM Networks. In ITAT (pp. 17-25).
10 Malhotra, P., Ramakrishnan, A., Anand, G., Vig, L., Agarwal, P., & Shroff, G. (2016). LSTM-based encoder-decoder for multi-sensor anomaly detection. arXiv preprint arXiv:1607.00148.
[1] Dissanayake, T., Fernando, T., Denman, S., Sridharan, S., Ghaemmaghami, H., & Fookes, C. (2020). A robust interpretable deep learning classifier for heart anomaly detection without segmentation. IEEE Journal of Biomedical and Health Informatics.
异同点
[8]提出的方法是有监督的,无法很好的适用于标签不足或标签不精确的现实情况。且缺少可解释性,无法定位异常所在的位置。
[9, 10] 所提出的方法缺乏可解释性
11 所使用的解释方法仅能够显示出数据对模型输出的贡献,而不能指出异常的段。